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The movement of solutes in the root zone involves complex 
interactions of physical, chemical, and biological processes. 

Understanding and modeling these processes, as well as their 
impacts on plant growth and water and soil quality, remains a chal-
lenging area of research for scientists and engineers. Numerical 
computer simulation models such as HYDRUS (Šimůnek et 
al., 2005), UNSATCHEM (Šimůnek et al., 1996), MACRO 
(Larsbo et al., 2005), and RZWQM (Ahuja et al., 2000) per-
mit comprehensive analyses of root zone processes by allowing 
for a wide range of soil properties, chemical reactions, and root 
functions. Although these models provide great fl exibility, their 
complexity has a downside. Using the models requires specify-
ing values for a large number of parameters, many of which are 
often unknown or unobtainable. Long-term simulations, such as 

may be required when evaluating the transport and plant uptake 
of strongly sorbing (i.e., slow-moving) contaminants such as 
trace metals and radionuclides, are diffi cult because of the need 
to specify time-varying boundary conditions over many years, 
and because of lengthy execution times. Also, the complexity of 
numerical codes is such that many of the details of the models 
are often not apparent to users other than the model developers, 
thus making it diffi cult for both technical experts and regulatory 
agencies to interpret simulation results.

Alternatively, solute transport and plant uptake in the root 
zone can be studied using less-complex models, which typically 
take the form of a partial differential equation that can be solved 
analytically. While analytical models have the advantage of being 
relatively transparent with respect to model inputs and outputs, 
this simplicity often comes at the expense of signifi cant assump-
tions and approximations, such as requiring uniform soil con-
ditions and/or representing nonlinear chemical reactions with 
linear models. In some instances, however, these simplifi cations 
may not be too restrictive. For example, in long-term simulations 
(i.e., over tens or hundreds of years), short-term boundary fl uctu-
ations caused by precipitation can be averaged and an analytical 
model with time-averaged boundary conditions and root-zone 
average soil and transport properties may closely approximate 
a more complex, transient model (e.g., Destouni, 1991). Such 
an approximation may be poor in the case of quickly degrad-
ing solutes (e.g., pesticides) but should work well for strongly 
sorbing and persistent contaminants (e.g., trace metals, radionu-
clides) when the relevant timescale for assessing environmental 
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In regulatory and risk management analyses of environmental contaminants, the vadose zone may be treated as a subcomponent 
within a larger environmental modeling framework. For the complexity of the larger system model to remain at manageable 
levels, it is desirable that subcomponent models be relatively simple and require few input parameters. In this work, we develop 
an advective–dispersive solute transport equation that includes plant uptake of water and solute and present an analytical solu-
tion. Assumptions underlying the transport model include linear solute sorption, fi rst-order uptake, and a uniform soil water 
content. We examine the latter assumption in detail and demonstrate the effects of rooting depth, soil texture, and leaching 
fraction on the uniformity of the root-zone water content. The new analytical advection–dispersion model should be useful for 
estimating the transport and uptake of strongly sorbing and persistent contaminants, where the timescale relevant for assessing 
environmental impacts is long (decades) and short-term fl uctuations caused by, for example, precipitation can be averaged. As 
an illustration, model predictions are made for the uptake of cadmium (Cd) by wheat (Triticum aestivum L.) grown in sludge-
amended soil. The predictions are compared with those of a “one-compartment” model that has been proposed previously for 
risk analysis and regulatory studies. The comparison shows that the one-compartment model overestimates the long-term, 
steady-state Cd concentration in harvested wheat grain. The analytical advection–dispersion model is recommended as a tool 
for environmental risk assessment of strongly sorbing, persistent contaminants.
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impacts is measured in decades or centuries rather than seasons 
and years.

Among analytically solvable solute transport models, abun-
dant literature exists on the classical advection–dispersion equa-
tion (ADE). While analytical solutions to the ADE are widely 
available (e.g., van Genuchten and Alves, 1982; Skaggs and 
Leij, 2002), most do not explicitly incorporate water and sol-
ute uptake by roots, thus limiting their usefulness in analyzing 
root zone processes. Raats (1975) used the method of character-
istics to obtain an analytical transport model that included root 
water uptake but neglected diffusion and dispersion processes. 
Generalizations and extensions of the Raats (1975) model have 
been provided by Ginn and Murphy (1997) and Schoups and 
Hopmans (2002). The latter study included plant uptake of both 
water and solute. Hoffman and van Genuchten (1983) reviewed 
various steady-state transport solutions that include root water 
uptake while neglecting diffusion and dispersion, whereas Raats 
(1981) considered the effect of a constant solute diffusion coef-
fi cient on the shape of steady solute profi les. To date, none of 
the analytical modeling efforts have included a general (i.e., pos-
sibly nonconstant) description of diffusion and dispersion. In 
this work, we develop a solute transport model that accounts for 
advection and dispersion diffusion, as well as for the uptake of 
water and solutes by roots, and we present an analytical solution. 
Additionally, we discuss general characteristics of the proposed 
transport model and consider an example application involving 
the uptake of cadmium by wheat (Triticum aestivum L.) growing 
in sludge-amended soil.

Theory
Steady Water Flow with Plant Uptake

Conservation of mass for one-dimensional steady water 
fl ow can be written as

w
d ( ) 0
d
q r z
z
+ =  [1]

where q is the water fl ux (L3 L−2 T−1 ), rw(z) is a sink term spec-
ifying the rate of water extraction by roots (L3 L−3 T−1 ), and z 
is the vertical coordinate (L), oriented positive downward with 
the soil surface located at z = 0. The sink term can be expressed 
as (e.g., Feddes et al., 1978; Skaggs et al., 2006)

w( ) ( )r z Tb z=  [2]

where T is the transpiration rate (L3 L−2 T−1) and b(z) is the 
normalized uptake density (L−1). Integration of Eq. [1] gives the 
steady-state water fl ux profi le

0( ) ( )q z q TB z= −  [3]
where q0 ≡ q(0) and B(z) is the cumulative uptake distribution,

′ ′= ∫0( ) ( )d
z

B z b z z  [4]

We are interested only in the case of q0 > T, such that water fl ow 
is vertically downward (q > 0).

Advective–Dispersive Solute Transport and Plant Uptake

Conservation of mass for one-dimensional solute transport 
can be expressed as

b s
s

( ) 0C S j r
t z

∂ θ +ρ ∂
+ + =

∂ ∂  [5]

where C is the solute concentration (M L−3), θ is the volumetric 
water content (L3 L−3), ρb is the soil bulk density (M L−3), S is 
the sorbed solute concentration (M M−1), js is the solute mass 
fl ux (M L−2 T−1), and rs is a solute sink term (M L−3 T−1) 
that accounts for the uptake of solute by roots. The solute fl ux is 
assumed to follow the standard advection-dispersion model,

s ( ) ( ) Cj q z C D z
z

∂
= −θ

∂  [6]

where D is the effective diffusion–dispersion coefficient 
(L2 T−1), which may vary with depth due to the dependence of 
dispersion on solute velocity. In this study, we assume that solute 
uptake is a fi rst-order process such that

s wr r C= γ  [7]

where γ is the uptake coeffi cient (γ ≥ 0). A mechanistic inter-
pretation of γ in terms of transport across root membranes is 
provided by Dalton et al. (1975); additional discussion of the 
fi rst-order uptake model in given below in “First-Order Plant 
Uptake.” We also assume that the soil water content is approxi-
mately uniform with depth [θ(z) ≈ θ] and that sorption is lin-
ear with a partitioning coeffi cient Kd. With these assumptions, 
introducing Eq. [2], [3], [6], and [7] into Eq. [5] leads to the 
following transport equation:

[ ]

[ ]

0( ) ( )

(1 ) ( )

T

T

C C CR D z v v B z
t z z z

v b z C

⎡ ⎤∂ ∂ ∂ ∂⎢ ⎥= − −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
+ −γ

 [8]

where R is the retardation coeffi cient, v0 ≡ q0/θ, and vT ≡ T/θ. 
Note that because q0 > T (see “Steady Water Flow with Plant 
Uptake”), it follows that v0 > vT. Formally, R is defi ned by R = 
1 + Kdρb/θ, although in practice R is commonly treated as an 
effective, empirical parameter. The assumption that the water 
content is uniform with depth is important to obtaining Eq. [8]; 
we examine that approximation in detail in the next section.

The left-hand side of Eq. [8] and the fi rst term on the right-
hand side are familiar terms common to many advection–disper-
sion transport models (e.g., Skaggs and Leij, 2002). The second 
term on the right-hand side is an advection term that contains a 
depth-dependent transport velocity, which decreases with depth 
from a maximum value of v0 at the soil surface to a minimum 
value of v0 − vT at the bottom of the root zone. The fi nal term 
in Eq. [8] is a combined sink–source term that accounts for the 
concentrating effect of a decreasing water fl ux and the countering 
effect of solute removal. When γ = 0, no solute is taken up and 
the concentrating effect in the root zone is maximal. When sol-
ute is taken up passively with water (0 < γ ≤ 1), the concentrating 
effect is reduced, becoming nonexistent when γ = 1. Specifying 
γ > 1 corresponds to active solute uptake (Schoups and Hopmans, 
2002), such that solute concentrations are reduced as a result of 
plant uptake.

Uniformity of Soil Water Content

The derivation of the solute transport equation in the previ-
ous section involved the assumption that the soil water content 
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is approximately uniform with depth. Previous theoretical analy-
ses of water fl ow with root uptake have found that the pressure 
head depth-profi le is generally very uniform during steady fl ow 
(Raats, 1974) or quasi-steady fl ow such as may be achieved with 
high frequency irrigation (Rawlins, 1973). Steady-state water 
content profi les computed by Yuan and Lu (2005, their Fig. 4) 
similarly showed a high degree of uniformity in the root zone. 
To further justify the uniform water content approximation 
invoked above, we present in this section an analysis of steady 
fl ow that extends the work of Raats (1974).

Consider the specifi c case of a uniform soil where the steady 
water fl ux is specifi ed by the Buckingham-Darcy law, in which 
case Eq. [1] becomes

w
d d ( ) 0
d d

hK K r z
z z

⎡ ⎤
⎢ ⎥− + + =⎢ ⎥⎣ ⎦

 [9]

where h is the pressure head (L) and K is the hydraulic conduc-
tivity (L T−1). The hydraulic conductivity is assumed to be of 
the form (Gardner, 1958)

s( ) e hK h K α=  [10]

where Ks (L T−1) is the saturated hydraulic conductivity and α 
(L−1) is the Gardner parameter that ranges approximately from 
0.1 cm−1 for coarse-textured soils to 0.01 cm−1 for fi ne-tex-
tured soils (Raats, 1974). Using the root water uptake term of 
Raats (1974), rw(z) is given by

/
w( ) ( / )e zr z T − δ= δ  [11]

Equation [11] prescribes an exponential uptake distribution, 
with the distribution parameter δ (L) corresponding to the depth 
of an equivalent uniform root system having the same uptake 
and transpiration rates (Raats, 1974). Although Eq. [11] accom-
modates an infi nite rooting depth, 99.8% of the uptake occurs 
within a depth of 6δ.

For the soil surface boundary condition,

0
d(0) (0) (0)
d
hq K K
z

=− +  [12]

and the lower boundary condition at a depth z = L,

d ( ) 0
d
h z L
z
= =  [13]

the solution of Eq. [9] for L → ∞ may be expressed as

/0

s s
( ) ln 1 e

1
zq Th z

K K
− δ⎡ ⎤⎛ ⎞αδ ⎟⎜⎢ ⎥α = − − ⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠+αδ⎣ ⎦

 [14]

Raats (1974, Eq. [21]) presented an equivalent result 
expressed in terms of the matric fl ux potential instead of the 
pressure head. Equation [14] indicates that the pressure head 
will decrease downward, from a high value at the soil surface 
down to some constant value as z → ∞ (or, more practically, as 
z → ≈6δ). Profi le uniformity can be evaluated by calculating the 
difference between the pressure head at the soil surface and at 
depth, Δh ≡ h(0) − h(∞). From Eq. [14] it follows that this pres-
sure head difference is given by

Fln 1 (1 1/ )
1

h L
⎡ ⎤αδ

αΔ = − −⎢ ⎥
⎢ ⎥+αδ⎣ ⎦

 [15]

in which

0
F

0

q TL
q
−

≡  [16]

is termed the leaching fraction (i.e., the fraction of q0 that passes 
below the root zone).

Figure 1 shows a plot of αΔh versus the dimensionless 
parameter αδ for various values of LF. The limit αδ → 0 cor-
responds to a very fi ne soil and/or a shallow root distribution, 
whereas αδ → ∞ implies a coarse-textured soil and/or very deep 
rooting (Raats, 1974). Figure 1 indicates that the difference 
between the pressure head at the soil surface and at the effective 
base of the root zone is smaller (i.e., the profi le becomes more 
uniform) when LF is large and/or αδ is small. This means that 
high leaching fractions (large LF), fi ne-textured soils (small α), 
and shallow rooting depths (small δ) promote uniformity in the 
pressure head profi le.

To make these generalities more quantitative, consider that 
the maximum rooting depth, RD, for common agricultural crops 
ranges from about 100 to 300 cm (Borg and Grimes, 1986), 
with the global-average value being about 210 cm (Canadell et 
al., 1996). Given that 99.8% of uptake occurs within a depth 
of 6δ, we may characterize shallow-, average-, and deep-rooted 
crops as having δ = RD /6 ≈ 20, 35, and 50 cm, respectively. 
Among noncrop plant species, comparable global-average values 
are RD = 700 cm for trees (δ ≈ 120 cm), RD = 510 cm for shrubs 
(δ ≈ 85 cm), and RD = 260 cm for herbaceous plants (δ ≈ 45 
cm) (Canadell et al., 1996).

Figure 2 shows Δh plotted versus RD (= 6δ) for fi ne-tex-
tured (α = 0.01 cm−1) and coarse-textured (α = 0.1 cm−1) soils 
and various values of LF. For α = 0.1 cm−1 (dashed lines), Δh 
changes very little as RD increases from 100 (shallow rooted crop) 
to 700 cm (tree), indicating that rooting depth is of lesser impor-
tance in determining pressure head uniformity in the coarse soil. 
The effect of the leaching fraction is more signifi cant, with Δh 
increasing approximately from 7 to 22 cm when LF is decreased 

FIG. 1. Plot of αΔh as a function of αδ for various values of the leach-
ing fraction, LF (α  = Gardner conductivity parameter [L−1]; δ  = Raats 
uptake distribution parameter [L]; and Δh = change in pressure head 
between top and bottom of root zone [L]).
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from 0.5 to 0.1 (across rooting depths of interest, RD > 100 
cm). For the fi ne-textured soil (α = 0.01 cm−1, solid lines), the 
rooting depth is far more important. For example, when LF = 
0.3, Δh increases from 29 to 81 cm when RD is increased from 
100 to 700 cm. The leaching fraction is also signifi cant for the 
fi ne-textured soil: when RD = 300 cm (deep-rooted crop), Δh 
increases from 29 to 139 cm when LF is decreased from 0.5 to 
0.1.

The largest calculated Δh values were approximately 180 
cm for the fi ne-textured soil (LF = 0.1, RD = 700 cm) and 22 
cm for the coarse-textured soil (LF = 0.1, RD > 100 cm). These 
results correspond to low leaching and deep rooting scenarios, 
such as might be found in semiarid and arid climates. Even for 
these “worst-case” scenarios, however, the variation in the water 
content may not be excessive, depending on the nonlinearity of 
the retention function, θ(h), and the magnitude of dθ/dh. The 
nonlinearity in θ(h) means that the change in water content for a 
given Δh will depend on the pressure head at the soil surface, h(z 
= 0). For fi ne-textured soils where dθ/dh is typically very mod-
estly sized for all h values, a small Δh will correspond to a small 
change in water content, whereas for coarse-textured soils, dθ/dh 
may become large such that a small Δh can produce a relatively 
large change in water content if h(z = 0) is in the vicinity of the 
steep part of the retention curve.

The water content variation can be assessed quantitatively 
using the Russo (1988) model to describe the saturation:

2/(2 )0.5( ) e (1 0.5 )
mhS h h
+− α⎡ ⎤= + α⎢ ⎥⎣ ⎦

 [17]

where S is effective saturation (0 ≤ S ≤ 1) and m is Mualem’s 
(1976) tortuosity parameter, which we assume has the value m 
= 0.5. The difference in saturation between the surface and the 
base of the root zone is ΔS ≡ S[h(0)] − S[h(∞)] = S[h(0)] − S[h(0) 
− Δh]. Figure 3 shows plots of ΔS as a function of h(0). These 
plots were made using the leaching fraction and root depth com-
binations that produced the largest and smallest values of Δh 
observed in Fig. 2 (where RD ≥ 100 cm). Thus, the water content 

variations shown in Fig. 3 correspond to the greatest- and least-
uniform pressure head profi les plotted in Fig. 2. As expected, 
Fig. 3 demonstrates that in addition to the aforementioned 
effects of rooting depth and leaching fraction, the uniformity of 
the soil water content profi le is affected by the pressure head (or 
water content) at the soil surface. In evaluating Fig. 3, our expe-
rience suggests that when ΔS is less than about 0.1, the water 
content variability can be safely treated as negligible since that 
level of variability is similar to the precision that is obtainable 
with, for example, electromagnetic methods of measuring water 
contents under fi eld conditions. While it is not possible to state 
precisely the general conditions for which an effective, uniform 
water content approximation is acceptable, we conclude that the 
approximation is reasonable whenever the leaching fraction is 
suffi ciently large (e.g., ≥0.25). For coarse-textured soils where 
dθ/dh is large near the wet end of the retention curve, there is an 
additional requirement that the soil surface be drier than where 
the steep part of the curve is located (for the coarse soil depicted 
in Fig. 2, h(z = 0) must be less than approximately −75 cm).

Thus far, this section has been concerned with the internal 
consistency of the proposed transport model. That is, we have 
addressed the question of whether the water content can be rea-
sonably approximated as uniform given the model assumptions 
of uniform soil properties and steady fl ow. Once that question 
is resolved, a related but separate question that may be asked is 
whether a model that specifi es a uniform water content can be 
used to assess transport in fi elds where the water content is clearly 
nonuniform (e.g., in layered soil profi les). Evidence exists (e.g., 
Wierenga, 1977; Streck and Piehler, 1998) that solute distribu-
tions modeled using an effective uniform water content are not 
signifi cantly different from those modeled using an explicit rep-
resentation of the water content variability. Thus, we conclude 
that Eq. [8] may be useful in the case of nonuniform soil profi les 
if an appropriate effective water content can be determined.

First-Order Plant Uptake

The proposed transport model assumes that solute uptake 
is a fi rst-order process (Eq. [7]). The plant uptake of solutes is 

FIG. 2. The change in pressure head between the top and bottom of 
the root zone (Δh) plotted as a function of rooting depth. Plots are 
shown for two soil types (α  = Gardner conductivity parameter [L−1]) 
and various values of the leaching fraction (LF).

FIG. 3. Changes in soil water saturation between the top and bottom 
of the root zone (ΔS) plotted as a function of the soil surface pres-
sure head for two soil types. Plots are shown for a low-leaching, 
deep-rooting scenario and a high-leaching, shallow-rooting scenario. 
(α = Gardner conductivity parameter; LF = leaching fraction; RD = 
maximum rooting depth; Δh = difference in pressure head between 
the top and bottom of root zone; h = pressure head; and z = depth.)
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a highly complex process that depends on plant species, solute 
species, and solution composition (e.g., the uptake of cadmium 
is affected by the presence of other divalent cations) (Tinker 
and Nye, 2000). Detailed, mechanistic descriptions of uptake–
absorption processes are possible, but these defy a simple mathe-
matical description. Measurements of uptake kinetics commonly 
show that uptake increases linearly with solution concentration 
at low concentrations and then levels off and becomes constant 
at high concentrations. Consistent with these observations, 
uptake is often modeled assuming Michaelis-Menten kinetics 
(Tinker and Nye, 2000):

s
M

Cr
K C

∝
+

 [18]

where KM is the Michaelis–Menten constant. Alternatively, 
uptake may be modeled using two intersecting lines (Tinker 
and Nye, 2000), one representing a linear increase in uptake 
below some critical or threshold concentration, and one rep-
resenting a constant maximum uptake rate above the critical 
concentration (Fig. 4).

When the concentration remains below the threshold con-
centration, the fi rst-order uptake model is consistent with the 
two-line model, with the uptake coeffi cient γ being proportional 
to the slope of the fi rst line segment (Fig. 4). A connection with 
the Michaelis–Menten representation also exists at low concen-
trations (KM >> C), where the Michaelis–Menten model may 
be approximated as rs ∝ C/KM. In this case, the uptake coef-
fi cient is γ ∝ 1/KM. Note that if γ is related to KM in this way, 
then uptake calculated for a given concentration with Eq. [7] 
will always be greater than or equal to that specifi ed by the cor-
responding Michaelis–Menten model (Fig. 4).

Analytical Solution

We defi ne D0 ≡ D(z = 0) and consider the solution of Eq. 
[8] subject to the following boundary and initial conditions

0 0 0 0
0z

Cv C v C D
z =

⎛ ⎞∂ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠  [19]

( , ) 0C L t
z

∂
=

∂  [20]

I( , 0)C z C=  [21]

where C0 is the concentration of the infi ltrating solution and CI 
is the initial concentration of the soil water. An analytical solu-
tion may be obtained using the generalized integral transform 
technique, or GITT (Ozisik and Murray, 1974; Cotta, 1993; 
Liu et al., 2000). Liu et al. (2000) reported the GITT solution 
of a generic transport equation of which Eq. [8] is a special case. 
For the present problem, the solution given by Liu et al. (2000) 
may be written as

1/2
0

1
( , ) ( ) ( )

M

n n n
n

C z t C N z T t−

=
= + ϕ∑  [22]

where the infi nite summation required in the formal solution 
has been truncated at M terms and where the eigenfunction ϕn 
and its norm Nn are, respectively,

( ) cos[ ( )]n nz L zϕ = β −  [23]

0 0
2 2 2

0 0

1
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n

v DN L
D v

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎟⎜ β +⎝ ⎠  [24]

The eigenvalues βn are the fi rst M zeros of the equation

0 0cos( ) sin( ) 0n n nv L D Lβ − β β =  [25]

Because of the specifi c form of Eq. [8] and the boundary condi-
tions imposed, it is possible to simplify the expression presented 
by Liu et al. (2000) for Tn(t). Letting T(t) be a M-length vec-
tor with nth element Tn(t), values for Tn(t) in Eq. [22] can be 
obtained by computing (cf. Liu et al., 2000, Eq. [13])

1 1 1( ) exp( )[ (0) ]t t− − −= − − +T A B T B G B G  [26]
where elements of the M × M matrices A and B and the M-
length vectors G and T(0) are given by
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00
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∫

 [28]

1/2
0 0

(1 ) ( ) ( )d
L

n n T nG C N v b z z z−= −γ ϕ∫  [29]

1/2
I 0(0) ( ) sin( )/n n n nT C C N L−= − β β  [30]

A computer program implementing the presented solution is 
available from the senior author. For simplicity we considered 
in this study a constant inlet concentration, C0(t) = C0, and a 
constant initial concentration, CI(z) = CI. A solution for the case 
of a time-varying inlet and depth-varying initial concentration 
can also be obtained, although in that case the computation of 
Tn is more complicated due to the time dependence of Gn (see 
Liu et al., 2000).

FIG. 4. Illustration of the Michaelis–Menten and two-line uptake 
models. Also shown is a dilute solution approximation of the Michae-
lis–Menten model.



www.vadosezonejournal.org · Vol. 6, No. 4, November 2007 895

It is also of interest to consider the steady-state (∂C/∂t = 0) 
solution of the transport equation (Eq. [8]) for the special case 
of no dispersion (D = 0). In this case, a solution can be obtained 
by separation-of-variables, with the result being

1

0
F

1( )/
1 (1 ) ( )

C z C
L B z

−γ⎡ ⎤
⎢ ⎥= ⎢ ⎥− −⎣ ⎦

 [31]

where the leaching fraction is defi ned as before, that is, LF = (v0 
− vT)/v0 = (q0 − T)/q0.

Results and Discussion
General Model Characteristics

Figures 5 and 6 contain plots that illustrate general charac-
teristics of the advection–dispersion model with uptake of water 
and solute. The scenarios depicted in these fi gures involve, begin-
ning at time t = 0 d, the application of water with solute concen-
tration C0 to a soil that has an initially uniform concentration of 
CI = 0.25 C0. The solid lines in the plots are concentration vs. 
depth profi les computed with the analytical solution presented 
in the previous section (Eq. [22]). The dashed lines are steady-
state profi les computed with Eq. [31] for D = 0. The simulations 
assume an exponential water uptake distribution (Eq. [11]) and 
a dispersion coeffi cient that was specifi ed as

0( ) ( ) [ ( )]L L TD z v z v v B z=α =α −  [32]

where αL is the dispersivity (L). Model and algorithm parameter 
values are given in the fi gure captions. Note that the computa-
tional domain length L was much larger than the plotted depth 
such that the plotted results are for an effectively semi-infi nite 
profi le. Also, for simplicity we assumed a value of R = 1 for the 
retardation factor; using a larger R value merely shifts the plots 
to later times.

Figure 5 shows concentration profi les computed for succes-
sive times. At very early times (5 d, in this example), the sol-
ute profi le is qualitatively similar to that predicted with stan-
dard advection–dispersion models. The similarity ends quickly, 
however, as the concentration behind the front becomes larger 
than C0 while the leading edge retains the familiar dispersive 
shape. This solute build-up is due to the concentrating effects of 
a water fl ux that decreases with depth. At later times the solute 
profi le reaches a steady state, with solute concentrations increas-
ing from a minimal value at the soil surface to a maximal value 
at and below the base of the root zone. The maximum con-
centration that will be achieved is a function of the amount of 
water and solute being taken up, as determined by the leaching 
fraction (LF) and the solute uptake coeffi cient (γ). When γ ≠ 0, 
the maximum concentration is also affected by the value of the 
dispersion coeffi cient.

Figure 6 illustrates the effects of the uptake coeffi cient (γ) 
and dispersivity (αL) on the solute profi le. The profi les shown as 
solid lines are for a large time value such that solute concentra-
tions within the root zone (z ≤ 6δ) have obtained approximately 

FIG. 6. Plots of solute concentration vs. depth computed for various 
values of the transport parameters γ and αL. Except where indicated 
otherwise, the concentration profi les were computed using the follow-
ing parameter values: t = 1000 d, R = 1, δ  = 20 cm, v0 = 1 cm d−1, 
vT = 0.75 cm d−1, γ  = 0.1, αL = 10 cm, CI = 0.25 C0, L = 1000 cm, 
and M = 80. Dashed lines are steady-state results computed for D 
= 0. (t = time; R = retardation factor; δ = root distribution parameter; 
q0 = water fl ux at soil surface; T = transpiration rate; θ = volumetric 
water content; v0 ≡ q0/θ; vT ≡ T/θ; γ  = fi rst-order solute uptake coef-
fi cient; αL = dispersivity; D = dispersion coeffi cient; CI = initial soil 
solution concentration; C0 = infi ltrating solution concentration; L = 
depth of computational domain; M = number of terms summed in 
analytical solution.)

FIG. 5. Plots of solute concentration vs. depth computed for suc-
cessive times with the advection–dispersion transport model. The 
concentration profi les were computed using the following parameter 
values: R = 1, δ = 20 cm, v0 = 1 cm d−1, vT = 0.75 cm d−1, γ = 0.1, 
αL = 10 cm, CI = 0.25 C0, L = 1000 cm, and M = 80. Dashed lines are 
steady-state results computed for D = 0. (R = retardation factor; δ = 
root distribution parameter; q0 = water fl ux at soil surface; T = tran-
spiration rate; θ = volumetric water content; v0 ≡ q0/θ; vT ≡ T/θ; γ  = 
fi rst-order solute uptake coeffi cient; αL = dispersivity; D = dispersion 
coeffi cient; CI = initial soil solution concentration; C0 = infi ltrating so-
lution concentration; L = depth of computational domain; M = number 
of terms summed in analytical solution.)
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their steady values, whereas concentrations a short distance 
below the root zone are still increasing. Figure 6a shows that 
when no solute is excluded from the uptake process (γ = 1), root 
zone solute concentrations do not increase above C0; the steady-
state profi le is simply C(z) = C0. For γ = 0, no solute is taken 
up by the roots and the build-up of solute is maximized. Also 
shown is the result for the intermediate case γ = 0.5. For γ = 1.5, 
active uptake of solute occurs. In this particular case the steady 
solute concentration profi le decreases with depth, approaching a 
constant value that is less than C0 but greater than CI.

Figure 6b illustrates the effects of dispersion on solute pro-
fi le development. The profi les were computed for three values 
of the dispersivity: 2, 10, and 30 cm. As expected, the results 
show that increasing the value of the dispersivity produces more 
solute spreading at the front, which increases the time required 
for the profi le to reach steady state: the αL = 2 cm profi le at t = 
1000 d has very nearly reached steady state, whereas the αL = 30 
cm profi le is still increasing in the bottom of the root zone. Also 
as expected, the computed solute profi le approaches the steady-
state, D = 0 solution (dashed line, Eq. [31]) as the dispersivity 
approaches zero.

The computed profi les in Fig. 6b also illustrate a possible 
limitation of the advection–dispersion model as applied to trans-
port with simultaneous water and solute uptake. The problem is 
that when solute builds up in the root zone, a positive concentra-
tion gradient develops (i.e., directed back toward the soil surface), 
which, according to the advection–dispersion model, produces 
an accompanying diffusive–dispersive fl ux back toward the soil 
surface. The magnitude of this fl ux in reality should refl ect only 
diffusive processes rather than fi eld-scale dispersion processes. 
The use of a diffusion–dispersion coeffi cient value that refl ects 
fi eld-scale dispersion processes hence causes an excessively large 
upward component of the solute fl ux, leading to near-surface 
root zone concentrations that are too large. The higher the dis-
persivity, the more the surface concentration will exceed C0. The 
fi eld-scale dispersivity typically has a value in the range of 5 to 
20 cm (Jury et al., 1991), although this parameter often car-
ries a high degree of uncertainty. Given this uncertainty and the 
possible limitations of the advection–dispersion model, it would 
seem prudent to err on the side of choosing a relatively small 
value of αL (or D) when using this model. This limitation is not 
exclusive to the model developed here; the same considerations 
should apply to any advection–dispersion model that features 
root uptake, such as the comprehensive numerical models noted 
in the introduction.

Example Application

Cadmium is one of the most mobile and bioavailable trace 
metals and constitutes a potential human health risk through 
dietary intake (Buchet et al., 1990). In many locations the cad-
mium content of arable soils has signifi cantly increased over 
the years, primarily from application of cadmium-containing 
phosphorous fertilizers and from atmospheric deposition. The 
cadmium content in Swedish arable soils, for example, has 
apparently increased by about 30% since the beginning of the 
twentieth century (Andersson, 1992). The current soil content 
of cadmium can result in concentrations in harvested plant parts 
that are close to acceptable limits set for human consumption in 
many countries (e.g., Eriksson et al., 2000).

Legislative standards for allowable or critical metal loadings 
to arable land vary by country. One emerging method for risk 
assessment involves simple mass balance calculations wherein 
the soil is treated as a single compartment subject to fi rst-order 
uptake into harvested plant parts, linear sorption partitioning 
in the soil, and advective leaching below the root zone (Pačes, 
1998; Tiktak et al., 1998; Blombäck et al., 2000; Bergkvist et al., 
2005). Such an approach implicitly assumes uniform well-mixed 
conditions within the soil compartment and ignores depth varia-
tions of transport and uptake of both water and trace metals 
in the root zone. Given these assumptions, and using the same 
notation as above, the change in stored amount A (M L−2) is 
given by

0 0 z
d
d
A q C q C TC
t
= − −γ  [33]

where qz is the water fl ow at the base of the root zone and A = (θ 
+ ρbKd)RdC. Noting that qz = q0 – T leads to

d
d
C I kC
t
= −  [34]

where I = (v0C0)/(RRD) and k = [v0 + vT(γ − 1)]/(RRD). When 
C(0) = CI, integrating Eq. [34] from t = 0 to t gives

( ) I( ) 1 e ekt ktIC t C
k

− −⎛ ⎞⎟⎜= − +⎟⎜ ⎟⎜⎝ ⎠
 [35]

In the one-compartment model, the concentration of harvested 
parts of annual plants Cp (M m−1) is given by

p
p

( ) TCC t
B
γ

=  [36]

where Bp is the harvested biomass yield (M L−2 T−1). This 
expression is appropriate only for plants whose growth cycle is 
short relative to the timescale of solute transport in the root zone 
(e.g., annual crops). Setting dC/dt = 0 in the one-compartment 
model gives the steady-state soil solution concentration as

( )
0

F1 1 (1 )
CC

L
=
+ γ− −

 [37]

and the steady-state plant concentration as

( )
0

P
p F[1 1 (1 )]

TCC
B L

γ
=

+ γ− −  [38]

In our example application, we compare the analytical 
advection–dispersion and one-compartment models for the case 
of cadmium uptake into wheat grain, an important staple food 
in many parts of the world. The advection–dispersion model in 
this example was implemented using a constant dispersion coef-
fi cient, D(z) = D, and a linear uptake distribution,

D2
D D

D

0.8 1.6
( )

0

z z R
R Rb z

z R

⎧⎪⎪ − ≤⎪⎪= ⎨⎪⎪ >⎪⎪⎩

 [39]

This uptake distribution conforms to the “40:30:20:10 rule” 
(e.g., Raats, 1974; Hoffman and van Genuchten, 1983), such 
that 40% of the uptake is in the top quarter of the root zone, 
30% in the second quarter, 20% in the third quarter, and 10% 
in the bottom quarter. Omitting details, an expression equiva-
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lent to Eq. [36] may be developed for the advection–dispersion 
model to compute the harvested plant part concentration:

D D

P s0 0P P

1 1( ) d ( ) ( , )d
R R

C t r z Tb z C z t z
B B

= = γ∫ ∫  [40]

The uptake coeffi cient γ is an important parameter since it 
determines the extent to which cadmium in the soil solution is 
excluded from the plant. Measurements of cadmium uptake have 
indicated that uptake is linear over a range of concentrations 
relevant for sludge applications (Hamon et al., 1999; McGrath 
et al., 2000). Measurements of cadmium concentrations in soil 
solutions and wheat grain (Bergkvist et al., 2005), together with 
typical values of the water use effi ciency T/Bp for wheat (see Eq. 
[36]), suggest a value for γ of approximately 0.05, which we used 
in the calculations presented below. The remaining parameter 
values are shown in the caption of Fig. 7, which compares pre-
dictions of the two models. The assumed cadmium loading rate 
(1.6 mg m−2 yr−1) refl ects all sources of cadmium. In the wheat-
growing areas of Europe, diffuse aerial deposition, together with 
impurities in lime, commercial fertilizer, and feeds, would not 
supply more than approximately 0.3 to 0.5 mg Cd m−2 yr−1. 
Thus, for the scenario depicted in Fig. 7, we implicitly assume 
a signifi cant additional local cadmium source such as industrial 
emissions or sludge applications. The assumed loading rate is 
not unrealistic in that the current allowable limit in the EU for 
cadmium supplied with sludge is set at 15 mg m−2 yr−1 (EU 
directive, 86/278/EEC).

Figure 7 shows that for the above parameterization, the 
analytical advection–dispersion model predicts a fi nal steady-
state Cd concentration in wheat grain of approximately 0.2 mg 
kg−1, reached after about 500 yr, which equals the allowable 
concentration under EU directives. The root depth in the one-
compartment model is usually set to the plow depth (?0.25 m) 
since this best approximates the assumption of uniform mix-
ing (e.g., Tiktak et al., 1998). This assumption ignores subsoil 
uptake of cadmium, which can be considerable (Johnsson et al., 
2002). Figure 7 shows that with RD = 0.25 m, the one-com-
partment model substantially overestimates the grain cadmium 
concentration, although the pattern of increase is similar to the 
analytical advection–dispersion model, with a steady-state value 
approached after approximately 500 yr. Increasing RD to 1 m, to 
match the maximum depth of roots in the advection–dispersion 
model, produces good agreement with the advection–dispersion 
model at early times (up to 300 yr). However, the fi nal steady-
state value of the one-compartment model is independent of RD 
(see Eq. [38]), being about 75% larger than the value predicted 
by the advection–dispersion model. In terms of risk assessment, 
such a difference in model results is highly signifi cant. We con-
clude that the simplifi cations in the one-compartment model 
can lead to erroneous decisions, although the predicted devia-
tions in the present example would become signifi cant only after 
a few hundred years depending on the value of RD used in the 
one-compartment model. Finally, we note that the analytical 
advection–dispersion model requires only a few extra parame-
ters, which are easily estimated. The advection–dispersion model 
therefore should be recommended as the preferred tool for envi-
ronmental risk assessment of persistent contaminants.

Conclusions
Although a variety of comprehensive numerical simulation 

models exist for analyzing solute transport processes in the root 
zone, regulatory and risk management analyses often require 
simpler modeling tools with fewer input parameters. Simpler 
analytical models may be especially useful for assessing environ-
mental impacts of strongly sorbing and persistent solutes such 
as trace metals. This is because the relevant timescales for such 
assessments are measured in decades or centuries, in which case 
transport and plant uptake can be modeled effectively using 
annual and root-zone average parameters.

In this work we developed an analytical advection–dis-
persion model that includes plant uptake of water and solute. 
Although considerably simpler than many popular compre-
hensive numerical models, the analytical advection–dispersion 
model—with its explicit accounting of advection, dispersion, 
and uptake processes within the root zone—is much more realis-
tic than one-compartment, well-mixed models that are currently 
being used or considered for use in risk assessments. As an exam-
ple, we compared predictions made with the advection–disper-
sion and one-compartment models for the uptake of cadmium 
by wheat. The comparison showed that the one-compartment 
model signifi cantly overestimated the long-term, steady-state 
Cd concentration in harvested wheat grain. For this reason, we 
recommend the analytical advection–dispersion model as a pre-
ferred tool for environmental risk assessment of strongly sorbing, 
persistent solutes.

Possible limitations of the presented model arise due to 
assumptions of linear solute sorption and fi rst-order plant 
uptake. We thus suggest that model applications be restricted 
to cases of slight to moderate soil contamination where these 
assumptions are likely to be reasonable. Additionally, the model 

FIG. 7. A comparison of predictions of the analytical advection-disper-
sion and one-compartment models for cadmium uptake into wheat 
grain using the following parameter values: q0 = 0.7 m yr−1, T = 0.5 
m yr−1, γ = 0.05, Bp = 0.5 kg m−2 yr−1, θ  = 0.4 m3 m−3, R = 376, D 
= 0.015 m2 yr−1, CI = 1 mg m−3 and C0 = 2.286 mg m−3, equivalent 
to a cadmium loading of 1.6 mg m−2 yr−1. The root depth, RD, in the 
advection–dispersion equation model was set to 1 m, and two values 
of RD are shown for the one-compartment model (0.25 and 1 m). (q0 
= water fl ux at soil surface; T = transpiration rate; γ  = fi rst-order sol-
ute uptake coeffi cient; Bp = harvested biomass yield; θ = volumetric 
water content; R = retardation factor; D = dispersion coeffi cient; CI = 
initial soil solution concentration; C0 = infi ltrating solution concentra-
tion; RD = maximum rooting depth.)
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was derived based on an assumption of uniform soil water con-
tent. Among other factors, water content uniformity is affected 
by soil texture, rooting depth, and leaching fraction, with fi ne 
texture, shallow rooting, and high leaching all promoting unifor-
mity. In general, a leaching fraction of greater than about 0.25 
corresponds to a fairly uniform profi le when steady-state water 
fl ow occurs, except perhaps in very coarse-textured soils where 
substantial nonuniformity could arise if the surface soil were to 
be maintained at a high degree of saturation. Where nonuniform 
soil conditions prevail, the model may be used if an appropriate, 
effective water content can be identifi ed.
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